
',.«*^/m'M(»iaWW«»WTtWn,^.li^,f:'!*

AD-757 983

NETGEN: A PROGRAM FOR GENERATING LARGE
SCALE (UN) CAPACITATED ASSIGNMENT, TRANS-
PORTATION, AND MINIMUM COST FLOW NETWORK
PROBLEMS

Darwin Klingman, et al

Texas University

Prepared for:

Office of Naval Research

February 1973

DISTRIBUTED BY:

im
Naftmal Ticlmical brfonutiei Sarvici
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

,>^,-»W-,««v-#.w^^TO»«^^

4

i

CENTER FOR
CYBERNETIC

STUDIES
The University of Texas

Austin .Texas 78712

Riproduod by
NATIONAL TECHNICAL
INFORMATION SERVICE

U $ Dtportimnl of Commwu
SpringfltldVA 22151

D D C
r^' ■■ '- r;|-3

- B,

" P*l<:l '■„■■

,'

ri

.. ..,«,w3-m•.•»«»-■»^-■w''m^''''WW"1'*''XW18''?,*,'
„rt««w««rf','•'',*c',

Research Report
CS 109

NETGEN

A PROGRAM FOR GENERATING
LARGE SCALE (UN)CAPACITATED

ASSIGNMENT, TRANSPORTATION, AND
MINIMUM COST FLOW NETWORK PROBLEMS

by

D. Kllngman*

A. Napier**

j. Stutz***

February 1973

. «.od.» Hot...« of Op.r.tlo„. Research et the Unlverelt, of Tex«.

« „....r^re-. Operetion. Research »ivi.ica. Continent.! Oi! Cpany,

.„ ...uSr^f'r-of Operations Research at the Uni.erait, of Tsxss,
Austin, Texas

from the Fa rah Foundation and

ilVol'l^r^^llV^^X^ Ö' r»nita/stat.s Oovar-ent.

CENTER FOR CTBERNETIC STUDIES

A. Charnes, Director

Buslness-Econamlcs Building, 512

The University of Texas

Austin, Texas 78712

DISTRIBUTION STATEMENT A

Approved for public rsleas«;
DUtfibution UnJimrted

>D D C

APR 6 Wi

UUElSEIIirE
-— B

■--«^?r^wwJ)r■r*»7«^^«^•^"•;'^l•^'w,•'l

Unclassified
Security Classification

DOCUMENT CONTROL DATA R&D
fSrriinty i l/f* ^ifiration of title, huffy of ahstrtttt and indexing tmnatntion must he entered when the overall report is rlnssified)

1 ÜNIOINA TIMCi AC Ti Vt TV (Ccrpitrate withor)

Center for Cybernetic Studies
University of Texas at Austin

2». REPORT SECURITY CLASSIFICATION

Unclassified
26. GROUP

l KrPOM I t I 1L E
NETGEN - A Program for Generating Large Scale (Un)-Capacitated
Assignment, Transportation, and MiLimum Cost Flow Network Problems

4 DESCRIPTIVE NOT ES ('type ol report andjncluslve dales)

9 tuTHOmSi (Fir*I name, middle inllial, laal name)

D. Klingman
A. Napier

J. Stutz

S REPORT DATE

February 1973
7«. TOTAL NO. OF PACES

28
7b. NO. OF REF5

22
• a. CONTRACT OR GRANT NO.

NR-047-021
b. PHOJEC T NO.

9a. ORIGINATOR'S REPORT NUMBER(S)

Center for Cybernetic Studies
Research Report CS 109

N00014-67-A-0126-0008

N00014-67-A-0126-0009

'th. OTHER REPORT NOISt (Any other number» thai may be aealgned
Ihlt report)

10. DUTRIBUTION STATEMENT

This document has been approved for public release and sale; its
distribution is unlimited.

II. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Office of Naval ResearcMCode 434)
Washington, D.C.

IS. ABSTRACT

One purpose of this paper is to describe the development, implemen-
tation, and availability of a computer program for generating a variety of
feasible network problems. In particular the code can generate capacitated aijd
uncapacitated transportation and minimum cost flow network problems,
and assignment problems. In addition to generating structurally different
classes of network problems the code permits the user to vary structural
characteristics within a class.

Since researchers can generate identical networks using this code,
another purpose of the paper is to provide problems benchmarked on several
codes currently available. In particular, the later part of the paper contains
the solution time and objective function value on 40 assignment, transportatior
and network problems varying in size from 200 nodes to 8, 000 nodes and
from 1,300 arcs to 35,000 arcs.

DD FORM 1^70 (PAGE I)
I MOW «B I "• / W

S/N 0101 -807-681 1 ^
line iyq<npH tnc lassUiPf,

Stecuntv Ctansifica tion
»-.1140«

^^1

Unctasaifjed
Security Ciansifics ation

K EV WORDS

Transportation Problems

Network Problem

Transshipment Networks

Assignment Problems

Network Times

Transportation Times

Assignment Times

DD FORM
■ NOV •• 1473 (BACK,

S/N OIO2>Ot4-(IO0
%

ROLE

Unclassified
Security Classification

./

•■V»«I«ft-^-^"'«',,.'-,V':>- «n«.. .»..■,,M.,.*.,.™M^K.V.T,W^»~WI<"«<^^^

i
1.0 COULD YOU USE THESE PROBLEMS?

The purpose of this paper Is to describe the development, Implementa-

tion, and availability of a computer program for generating a variety of

feasible large scale L.P. problems which are generally termed network problems.

Among the most frequently discussed network problems which the code can

generate are capacitated and uncapacltated transportation and minimum cost flow

(pure) network problems;as well as the slmplir forms such as assignment,

shortest path, and maximum flow problems. In addition to generating struc-

turally different classes of network problems the code permits the user to

vary structural characteristics within a class. The user controls the size

of the problem ao well as various parameters. In particular,the user controls

the size by specifying the number of pure sources (origins), pure sinks

(destinations), transhipment nodes with supply (transhipment source nodes),

transhipment nodes with demand (transhipment sink nodes), transhipment nodes

with no supply or demand (pure transhipment nodes), and the total number of

arcs (cells) in the problem. The user has additional control of the structure

through the use of such parameters as: total supply, cost range, upper ca-

pacity range (the lower capacity of an arc is always zero), percentage of arcs

tu be capacitated, and another parameter which implicitly controls solution

difficulty. Another feature of the program Is the inclusion of a random num-

ber generator [4,22] with a user supplied seed. This feature allows the code

to regenerate the same problem if every input parameter is the same. Thus, if

one researcher wants to solve the same problems that another has solved, he may

do so by using the same input parameters. (Because of differences in word size

and hardware arithmetic this may not be true across all computers.) Since re-

searchers can generate identical networks, another purpose cf the paper Is to

provide problems benchmarked on several codes currently available. While the set of

benchmarked problems is small (40 problems) their characteristics are widely diversified.

*BP

2.0 MORE PROBLEMS - WHO NEEDS 'EM?

Since the earliest computational experiments with network computer

codes both users and developers have been faced with the necessity of eval-

uating such codes as to their capacity, speed, effectiveness (with respect

to problem structure), and accuracy. Initially most efforts were directed

toward determining solution accuracy, however, more recently attention has

been focused on the other attributes. This is due in Itrge part to the

availability of competing algorithms [1,2,3,6,8,10,11,12,13,14,15,16,17,19,

20], the development of larger network models, the increased use of network

models in government and industrial applications, and new techniques for

converting problems which otherwise appear to be unamenable to network for-

mulation. Current computational studies [1, 2, 13, 14, 16, 20] have concentrated

on problem size and solution time (relative to a particular class of networks)

1/
because of the Interest of potential users to minimize their computer costs.

Also some models are not being Implemented in Industry due Co the prohibitive

21
solution time and lack of computer codes to handle extremely large problems.-

Further Interest in reducing solution time is stimulated by the fact that

network problems often occur as subproblems in larger problems such as

warehouse location problems, multi-commodity network problems, fixed charge

transportation problems, and constrained transportation problems-.

The problem of adequately "benchmarking" even the most thoroughly de-

bugged codes arises, of course, in a variety of applications of computers to

mathematical and scientific problems. However, many network problems involve

quite large node-arc Incidence matrices (say 1500 by 10,000; that 1H, lr>0M

nodes and 10,000 arcs). Consequently, the data handling and generation of test prob-

lems become severe even for problems with well-known topologlcal characteristics.

For this reason, tasks like the comparison of performance of network codes

-2-

mmm

■ «wrumw^'W* *w*;«f'**EW'^Tv^:^

must be carried out with Che raw material (I.e. test problems) at hand.

Thus, one of the areas wherein our contribution lies Is that of pro-

viding yardsticks for the evaluation of a number of overall performance

characteristics of reasonably well debugged codes. Perhaps one of the most

useful applications of our code Is that of measuring the solution time and

accuracy of some well-known and widely used network codes when employed to

solve very large problems (e.g.,the code could easily be used to create

10,000 node problems of any desired arc density). Further, since this

generator can be used to recreate problems, developers of new codes could

use several standard "benchmarks" to compare their codes. Also, the avail-

I
ability. In quantity, of a meaningful variety of test problems» may help to

Influence the Implementation of new solution techniques for network problems.

All too often with new algorithms, an elegant theory has been a substitute

for, rather than gone hand-ln-hand with, effective performance in practice.

Some other attributes of having such a code available ar«:

1. To permit codes developed for a more general class of problems to

be easily tested on special subclasses. For Instance, codes developed to

sol/e general minimum cost flow network problems could also be easily bench-

marked on transportation and assignment problems, thus providing ways to

evaluate the relative worth of the more specialized codes. To illustrate

num erous algorithms exist for solving transportation problems and minimum

cost flow network problems. Theoretically these problems are equivalent

since any minimum cost flow network problem can be reformulated as a trans-

portation problem. However, the question arises, "Is It worth developing

and maintaining separate codes for each of these problem types, or should

only one of the codes be developed? If only one, whicfe type should be

developed?" From a theoretical standpoint, the O.R. literature reflects

the feeling that both types of algorithms should be pursued. Similar

-3-

^M^^MflBii

questions are relevant between algorithms for these problems and assignment

problems or maximum flow problems.

2. To encourage standardization of data specification for all types

of network problems. One of the problems we encountered in trying to

benchmark codes based on different methodologies (e.g., codes based on cir-

culation networks such as out-of-kilter [2,3,17] and codes based on Che

simplex method [6,12,13,14,20])siui codes designed to solve different types

of problems was their lack of uniformity far. iapat specification. To

illustrate, out-of-kilter implementations assume that the input will be an

arc at a time and that the network is a circulation network. The simplex

based codes assume that the Initial Inputs will be the supply ßm. demand of

each node followed by the arcs; however, even this Is not standard, since

some transportation codes assume that the supplies and demands are followed

by the cost matrix and upper capacity matrix (if the problem is capacitated).

Within this framework some codes assume the input of a complete cost matrix

while others assume the input is by origin with a cost and dsstlnatlon node

number for each admissible cell in the problem. To edd more confusion and

frustration some of these codes assume the destinations are numbered starting

at 1 and others from the number of origine plue one. This non-standardizacion

of problem specification (in terms of input format) Is most frustrating and

has hampered benchmarking since researchere are reluctant to re-code their

input routines. Thus it is sssentiel to eetabllsh a stsndard way of speci-

fying ell types of network problems se well as nstwork problems within e

class. In order to achieve this stsndardization with minimum user Incon-

venience, we use a network spseification which is compatibls with 8IAU

[3,17] out-of-klltsr sines this Is probsbly the most widely used nstwork

format. (See Appendix.)

-4-

»■■■^^,l^■l.<^.■«lm^««■»■»^»^^.«■^^»■^l^'^l^^^^i»«^l'«■^"WM■./■l l«^ll'lll*l*l'lf,>''IT<■y*'^'*l'*,

3. To facilitate computational studies on the effect of parameter

variation—such as changing the cost range, total supply, percentage of

arcs capacitated, number of arcs, and capacity range, etc.

A. To generate problems which will test various parts of a code.

Since till the problems generated by this code are feasible, it is clear

that wc can not generate problems capable of testing all parts of network

solution codes. In general, the validation phases in the construction of

large scale network codes present numerous challenges for adequately testing

all parts of the cod«. While establishing problems which will accomplish

this is virtually untracked territory, we have tried to design this code to

generate problems which will provide various challenges to solution codes.

For example, the code is capable of generating different network topologies

(e.g., assignment, transportation, and general network problems) with dif-

fering characteristics within each problem type. Thus good programming

practice and tie use of this generator can help to svert future fiascos,

similar to those which are undocumented but which have become legend in

the folklore. (An early example is the L.P. "nut mix code", so called because

of its ability to speedily solve this textbook problem, which had been used

as a test problem during code development, and to solve no other problems .)

3.0 The Creation Process

With these thoughts in mind we turn our sttention to a more specific

description of the methodology and other salient features of the generator.

Having read th« input parameters(which are described in the Appendix) the

size, type, and characteristics of the problem are fixed. The program then

creates a network problem within this framework.

-5-

^^^^^atm^

Th« ov«Mll program can b* dlvldad into two Mlo parttv tat-fitafpart^tiates

vhat la callad a akalaton natwork and la concamad with obtaining the proper

nunbar of nodea of each type, Insuring the correct total supply, and guar-

anteeing that the resulting problan will be connected and feasible. The

aecond part conpletea the problan while inauring that the rcoainlng specl-

ficatlona are mat, such aa total number of area, coat range, upper bound range,

and percentage of area capacitated.

First, all nodes are given a number (integer) between one and the

number of nodea, and the nodea are grouped into aeta by type (i.e., pure

aource, transhipment source, pure tranahlpment, pure sink, and tranahipment

alnk>. During thla part of the program, tranahipmenc sources and sinke are

treated aa pure sources and sinks, respectively. The total supply is then

randomly diattlbuted among the sources as follows: (The program uaes random

numbera from a uniform probability dlatributlon [4,22].) the total supply

ia divided by the number of aourcea and each aource la initially aaslgned

the integer part of thla «mount. Subsequently, the amount aaaigned to each

source is randomly apllt into two integer amounts. Bach aource retains one

part of the split and ths other part is assigned to a sourcs chosen at random.

The aupply of each aource la, thus, equal to the eum of the perts aaaigned to

it. Since the intitel division of the totel supply was truncated to equal

integer portions, eny unasslgnsd supply is also aaaigned to a randonly chosen

aource.

Nest, a tree le randomly creeted from each aource node by generating

erca involving the aource node end e rendom number of pure trenahipment

nodea. Thaee treea (called chains due to their etructure) are peirwiee

dlejoint and mutually exhauative of all nodea «wept sinke« In each chain

-6-

there is a single directed path from the source node to every pure tranship-

ment node In the chain.

After the chains have been created, each chain is connected to a

random number of randomly chosen sinks. During this procedure the last

node in each chain is always connected to a sink while the remaining sinks

picked for a chain are connected to members of the chain chosen at random.

Simultaneously, the demand amounts are accumulated for each sink by randomly

distributing the supply of the unique source among the sinks connected to the

chain, in a manner analogous .to the distribution of tthe'total supply. Since two

or more chains may be connected to the same sink, the demands of the sinks

are successively accumulated as new chains are attached.

In the case of transportation and assignment problems, since they contain

no pure transhipment nodes, each chain contains only a source (origin) node.

For transportation problems the origins are connected directly to a random

number of sinks (destinations) and the demands are created by distributing

the supply as above. For assignment problems each origin is randomly con-

nected to a unique destination and each origin is given a supply of one and

each destination is given a demand of one.

At this point the network has the correct number of sources, sinks,

transhipment nodes, and total supply. Also the network is guaranteed to be

connected and feasible (without capacities). This partial network Is called

the skeleton and its generation completes the first part of the program.

Observe that the skeleton will only contain a few more arcs than is required

to have a connected graph. Thus,one of the major attributes of this procedure

is its ability to create networks of extremely low density. It should be

noted, however, that problems with extremely low density will possess similar

-7-

..ww-y*w-T—^iw*ir^'g'wwiwll'"l'n**iiwiliiw>l.|ii ^l|i,|imw

structural features due to this nrocess.

The second part of the program begins by determining the costs and

capacities for the arcs in the skeleton. Using the percentage of arcs to be

capacitated (supplied In the Input), certain arcs in the skeleton are ran-

domly chosen to be capacitated. The upper capacity of each randomly chosen

arc is set equal to the larger of the supply of the unique source of the

chain In which the arc appears and the user supplied minimum upper bound.

The remaining arcs in the skeleton are left uncapacltated. (Note that the

capacity of arcs In the skeleton may be higher than the largest upper capacity

supplied by the user.) A percentage (one of the input parameters) of the arcs

in the skeleton (the specific ones are chosen randomly) are assigned the

maximum cost. Other arcs are assigned a cost randomly chosen between the lower

and upper limits. The flexibility to set the costs of a percentage of the

skeleton arcs large is intended to discourage the use of these arcs In an

optimal solution, thus, (possibly) making the network more difficult to solve.

Figure 1 contains the skeleton generated by the code using the input speci-

fications contained in Table I.

L«><<uuuin-r*.«tii«l. *■(■•• «IN § »I» • «Ufft* • MWCCS • •!>«» »Nl CMT» €*»«€»• «I». , • »«« • Hf". *

HUMTtTT* !<• 3 « ♦• 3t* IM I***

Table I

-8-

mmmmt mm ■HMMMMMMMMMM

« i

3
(D

8

u

9)

J5

M
O

•s
4J •

s
u
o
c
o

2

2

-9-

■"ll :<

Once the skeleton Is complete, the problem is guaranteed to be feasible

regardlecs of the number, locetion, or characteristics of any additional

arcs. Therefore, all that remains is to randomly generate and distribute

the required number of additional arcs. (It is during this phase of the

program that arcs are permitted to emanate from a transhipment sink and

terminate at a transhipment source). For each node, except pure sink nodes,

a random number of additional arcs are created from this node to other

randomly selected nodes, while insuring that no duplicate arcs are created.

The number of nodes to which a given node is connected, is randomly chosen

from a range selected such that the final network will contain approximately

the correct number of arcs. This range is dynamically adjusted, as each

node is successively considered, in order to reflect the number of nodes

remaining for consideration and the number of arcs remaining to be created.

During this process a cost is randomly chosen (within the proper range) for

each arc created and the given percentage of them are given an upper capacity

randomly chosen within its range. This essentially completes the network except

for adding a super-source (numbered one larger than the total number of nodes),

and a super-sink (numbered two larger than the total number of nodes) in order to

circularize the network. (The nodes and the arcs added for the purpose of creating

a circulation network arc not counted in the total number of nodes and arcs.

They are Inserted for compatibility with SHARE [3,17] input format only.)

Figure 2 illustrates the final network completed from the skeleton appearing

in Figure 1. (The dashed lines in Figure 2 correspond to the arcs added

in order to cltcularize the network.. The dotted lines correspond to the

skeleton arcs.) The costs and capacities of each arc are given in Table II

in the same format as they appear on the problem file. (See Appendix.)

-10-

*^^^Mi

nm» ****'* m* imi**

I

u
§
4J
0)

'S

g o
t

0)

%

-11-

TABLE II - Arc Parameters

FROM TO UPPER LOWER
NODE NODE COST CAPACITY CAPACITY

13 1 0 300
13 2 0 163
13 3 0 287
1 7 29 300
1 5 93 750
1 6 16 100
6 12 20 750
6 11 100 300
6 10 25 100
6 7 89 750
6 4 24 100
7 6 45 300
7 9 85 750
7 5 93 100
7 8 74 750
2 8 100 163
2 10 11 100
2 5 93 100
8 11 35 163
8 9 44 163
8 4 27 100
3 4 65 287
3 8 93 100
3 7 99 100
4 5 21 287
4 9 63 750
4 12 27 287
4 3 91 100
5 11 47 750
5 10 81 287
5 7 39 100
9 14 0 360
9 12 65 100

10 14 0 40
10 5 32 100
10 6 78 750
10 8 56 100
11 14 0 188
12 14 0 162
14 13 0 750 750

-12-

^M^MI mmsi

Not« that all arcs have an uppar bound, hovavar thoae arcs

which ara conaldarad uncapacltatad have their upper bound set equal to

the total supply. Mao, observe that all arcs have a lover capacity of

zero (blank field), except the arc connecting the super-sink to the super*

source which lias both upper and lower bound set to the total supply.

One of the more salient features of the code and the one chlafly

responsible for its ability to create large networks is the way the network

is stored. The skeleton is the only part of the network stored in core.

Further, it is stored as a set of linked lists, each list corresponding to

a chain. The demand for each sink and all of the arcs in the skeleton,

except for the arcs connecting the chains to the sinks, are contained in

one node length array. (All additional arcs are output to the problem file

as they are cceated.) There are three other arrays (each one is at most node

length in size) whoae sole purpose Is to insure non-duplication of arcs. The

program contains only two other arrays. One contains the bupplies of each

source; the other is an array whose size is equal to the number of sinks and

is used in connecting chains to sinks. Thus, the total array core require-

ments of the code is at most 5 times the number of nodes,which accountR for

our ability to generate problems with thousands of nodes and an unlimited

number of arcs. This is in contrast to the rudimentary network genetators

which use a node x node incidence matrix. The improvement in the ait-i ca-

pability is in addition to the flexibility and generality discussed earlier.

Thus, the generator should prove to be quite helpful to practitioners and

reHearchers for many years since no existing codes are capable of solving

such large networks.

-13-

•«■■aM mt

4.0 Benchmark«

To help establish a small set of problems which researchers can use to

benchmark their codes, we have generated and solved 40 network problems

using 4 network codes. Table III contains the specifications of these 40

problems as required on the Input cards. Problems 1-5 are 100 x 100 trans-

portation problems; problems 6-10 are 150 x 150 transportation problems.

The parameter specifications of tne first ten were picked to correspond with

the problems in [1,13] to provide a basis for comparison. Problems 11-15

are 200 x 200 assignment problems.

Problems 16-27 are 400 node capacitated network problems; problems 28-35

are uncapacltated 1000 and 1500 node network problems. The parameter spe-

cifications of these problems, like the transportation problems, were picked

to correspond with the problems in [1]. (The problems in [1] were generated

using a preliminary version of this network generator.)

To facilitate and encourage the development of large scale codes,we have

included a few problems (problems 36-40) which are at the frontier of large

scale solution code capability. These problems are small, however, compared

with the capability of the network generator.

The four codes which we used to solve the problems are those of SHARE

[3,17], Boeing, SUPERK [1], and PNET. The first three codes are out-of-kilter

codes while the last code is the special purpose simplex network code referenced

In footnote If. The Boeing code, which was obtained through Chris Witzgall,

was developed at the Boeing research laboratories. Table IV contains the

solution times (lot including input and output) and optimal objective function

value for each of the problems. (The objective function values are included

'to help code developers verify the solution accuracy of their codes.)

-14-

t .1.1. HI

fHUILEM srtciriuiionj

Humlm
1 <>d»

Nuakai of
teure»

»«kit

•(IInk!

Diabii Con JUn»

Ot «TCI IK TO

Toltl

Sj^l»

IrtnljllBMM • rtrcgnt oi

illfh Co«

rent of Arct

.po.llttnl

Uppar touml «•««• J^.—^*. Undo«

1., I.oj
"vurCfll »Ink«

1 /v. 1<KI 100 111» 1 100 100,000 0 0 0 '1 0 IJSOIttO

/ /'.'. I'M 100 IV^, 1 ion u*)t<y*i 0 0 0 0 o 1 llS02ttO

, /v. I'JO I'» Hltt, i im lllli,(l>W ■, u 0 '■ 0 1 lJS02ttO

<• /'C. ffl IIM tf'lh 1 I'KI I'Hl,»*"« 0 1 1 0 ■J 0 11102440

/■*! fill IMI IV fl i i'* l'l»(,WH* 0 o 0 '/ '-) nsoitto

1, I'|»l IV. IW 11V 1 10» \;;.imi 0 0 0 o 0 0 lJS02t/j

1 11*1 IW m tV)0 1 100 1 »0.1/10 Ü 0 0 0 0 0 lJS02t4j

». 100 l JO 1)0 si» 1 100 1 Vi.OO« 0 0 0 0 0 lJ)02tliO

t4. 100 1M m t07S 1 100 ISO.000 Ü 0 0 0 0 0 USO^toO

10, 100 ISO IW tJOO 1 luO no.ooo 0 0 - 0 0 0 11502*60

11. 400 200 200 isoo 1 100 toil 0 0 0 0 0 0 1JSU2440

12. «00 200 200 2210 i loo im 0 0 0 0 0 0 lJS02t4J

»1. too 200 200 ISOO 1 100 200 0 0 0 0 0 0 lIS02ttO

1». too 200 200 j;so 1 100 JOO 0 0 c o 3 0 usoitto

IV too no 200 «soo 1 100 200 0 0 0 0 0 0 IJS02t4J

I». too • M not 1 • 100 too,ooo 0 0 JO. 20. It,009 jo,ooo IJSWttO

11. too • M 2tt) 1 100 too,000 0 0 JO. 20. It,000 10,000 nS02t40

1«. too • to UM 1 100 too.000 0 0 10. 20, 20,000 120,000 lJS02ti>l

!♦, t»; « to 2ttl 1 100 too.000 0 0 10. 70 20,000 110,000 i)so;t'.

It tl)0 ■ to Itlt 1 100 tor.. 00« s w 10. to, It.Ot 10,000 1iS02t > '

/t tIK) • to 21 It lno ton.'too ■) Vi 10 to. It,ooo K.OiP" HSV'.',.

.J t'Hi • M lt|>, 100 too.uuo s 10 11. /.n 20,000 120.01« lj<024(,'i

/1 t'lO • to 21 It IIM 400.000 1 so 10. to. ;o.ooo 120,000 lJS02t40

.* tfw t 12 lit; 100 to«.000 0 0 10. 1), 1«,000 10,000 US02t4O

/• t'Kl t 12 2t7* 100 too.ooo 0 0 1.' «0. 14,000 10,000 l)i0.%tü

2«. ton t 12 1112 100 too.ooo 0 0 It'. «0 20,000 120,000 ll>OVt»0

V too t 12 2t;t 100 tco.oou 0 0 JO. 10. 20,000 120,000 lJS02ttO

It. KM» M SO 2M0 100 i.ooo.ooo 0 0 0 0 0 0 usoztoo

!* 1'K*) JO SO HOO 100 1.000.ooo 0 0 u 0 0 0 lj>02tt0

1«. 1UU<1 M to ttoo i 100 1.000.000 0 0 1 0 0 Ü 11S'I2»63

11 1U00 Ml 80 MOO 100 1.000.000 0 0 0 0 0 0 lJ>o:ttj

11. MOO 7J IS tlt2 100 l.SOO.OOO 0 0 0 o 0 c lJS02t6ü

11. noo »1 7i tits 1 tOO 1,>OÜ.OOU 0 0 1 0 0 'J IJSOitbj

14. I'OU »> 7J 1107 1 100 l.SOO.OOO 0 o [1 0 0 0 l»»0i»»u

IV ISlM 1! 7. ,iyt 100 . , '0 , "UO o 0 0 0 l)Su2t4u

11, ll'Cy 200 1000 SOOO 1 100 * . 'KICJ. 000 ■00 10U o 10 u lliO.'.l,,

1). i0*J0 IW HO 21000 1 100 t, OOO ,000 so luo 0 o ') ' IISO;.4J

11 I'M, >!•> 100 ISOOO 1 1011 .■ .O'lO.)0l 2i w ■' : iv,:,to

1» VKlO

I'll»«)

itg

iri-j

'00

100

1VJ'*, 1

; liwu i

100

1 I't

fc.'.'.,J..HK(life

l.)N . i

' ■,000 i i .'i:44o

i r/i.-t*, /

*

-15-

TABLE IV

Solution Times (sec) and Optimal Objective Function Value

Problems PNET SUPEPK SHARE Boeing Objective Function Value

1 1.30 5.68 17.76 30.25 2,153,303
2 1.49 6.47 21.34 21.59 1,950,881
3 1.94 6.87 26.16 31.47 1,565,928
A 1.64 6.57 25.13 36.47 1,462,732
5 1.88 6.77 ^0.97 47.73 1,342,058
6 3.55 11.05 46.40 46.64 2,302,477
7 4.06 12.86 65.92 113.12 2,046.034
8 4.72 13.69 81.00 175.10 2,155,354
9 4.80 13.40 81.21 186.99 1,775,454

10 5.88 14.13 84.24 184.75 2.145,687
11 3.52 6.44 19.93 30.39 4563
12 4.87 6.47 21.17 22.08 3389
13 5.52 7.25 25.81 20.02 3070
14 6.02 6.95 24.95 23.11 2754
15 6.50 7.56 27.05 21.08 2721
16 2.40 5.27 21.51 15.05 69,612,156
17 3.11 8.36 32.40 64.64 46,831,850
18 1.92 5.13 20.06 18.31 68,197,261
19 3.60 8.49 31.75 61.07 45,816,193
20 2.67 4.69 18.11 25.72 65,940,530
21 2.76 7.96 32.60 61.39 48,575,656
22 2.22 4.60 17.91 24.84 65,770,640
23 3.00 7.91 32.66 67.96 48,503.656
24 3.12 5.59 25.27 21.57 ^2,612,577
25 4.17 8.37 33.19 48.40 60,418,740
26 4.45 5.51 25.05 19.34 82,612,189
27 4.42 7.50 30.45 41.98 56,665,337
28 6.35 13.91 53.87 83.98 122,582,531
29 7.39 14.51 52.55 117.83 105,050,119
30 9.08 16.00 61.33 152.21 86,331,458
31 9.59 17.05 61.33 135.73 82,561.499
32 15.70 22.88 78.63 553.93 174,279,219
33 20.20 25.89 101.92 210.14 195,931.070
34 17.10 25.42 92.25 248.16 160,007.929
35 19.39 29.96 DNR DNR 162,270.303
36 384.081 NA NA NA 860.372.467
37 245.404 NA NA NA 351,773.733
38 140.982 NA NA NA 8.»,886,945
39 193.426 NA NA NA 512,111,082
40 105.097 NA NA NA 130,366,881

NA - Code and data would not fit In 104,000 words of memory.
DNR- Did not run.

-16-

*^

■-•mf iyiTT^wi>**t*,*y^,s ■

Th« tints reported In Table IV were obtained on e CDC 6600 uelng the

FORTRAN RUN compiler. The euthore have eolved tome of theee problons on

a UNIVAC 1108 uelng the FORTRAN V compiler, and on the IBM 360/6S using

the H compiler. The times on the UNIVAC HOSvere about 10X slower, while

the times on the IBM 360/65 were about 12X elower.

A noteworthy feature of the compuuatlonal results that pervades the entire

study is that PNET and SÜPERK are decidedly superior to the other codts.

(Roughly, PNET and SUPERK are at leaat 4 times faster and In many cases 8-10

times faster than the other codes.) Furthermore PNET strictly dominates

SUPERK. (PNET is roughly twice aa fast as SUPERK.) This is a surprising

result elnce a non-extreme point algorithm is generally believed to t-e faster

especially on assignment problems. Another advantage of the primal simplex

approach indicated by the computations, is the core requirements of such a

code. Whereas all of the out-of-kllter codes require at least 7 arc length

arraya and 4 node length arrays, PNET only requires 3 arc length and 8 node

length arrays. Thus PNET is capable of salving auch larger problems than

the other codes.

One of the unique findings obtained by a joint analysis of the three

problem types is that assignment problems appear the easiest to solve, fol-

lowed by general minimum cost flow network problems, and hardest to solve are

the transportation problems. This finding la unexpected eince it le a part

of the folklore that transportation problems are easier to solve than net-

work probleme.

Another aspect of these computational results is that the transportation

problem solution timee on the out-of-kllter codes (particularly the SUPERK timee)

are substantially longer than (twice as long as) those reported in [1,13]. This

reHult demonetrateH the neud fur rcHearchers to use a atandard problem generator

-17-

.A

■Inc« tht tflM probl« p«r«i«t«ra war« uMd to gMicrat« both th« problms

In U»3) «nd eh«M problM« vlth difftrcnt gmaraeora. Slallarly eh« net-

work probl«« 16-33 w«r« g«n«i'at«d using th« •«»« p«r«a«t«r« and only dlf-

f«r«nc versions of our ganerator. Howovar, cha solution tiaaa raportad in

Tabla IV ara slightly longar than thoaa in [13].

J

-18-

Poocnotsi

1. Network codas and coaputatlonal atudlaa which ara currantly In prograaa

Includat

a) a naw out-of-klltar approach by M. Florian, dapartaant of Information,

Uaivaralt« Oa Nontraal.

b) a apacial purpoa« primal alaplax natwork coda by Cravaa,

and R. Mc Brlda , Graduata School of Buainaaa, Univaralty of

California at Loa Angalaa.

c) a ainiaua coat flow natwork coda (tha axact mathodology to ba anployad

la not known) by Burrougha Corporation.

d) a naw out-of-klltar approach by tha Taxas Watar Davalopaant Board.

a) a coda for wiving transportation problama with concava coat functions

by 1. Soland, Cradvata School of Buainaaa, Univaralty of Taxaa at Auatin.

f) a computational atudy on a primal almplax natwork coda by Clovar, Karnay,

Klingman, Graduata School of Buainaaa, Univaralty of Taxaa at Auatin.

2. To illuatrata, Paul Randolph at Naw Haxico SUta Univaralty, in conjunction

with tha dapartmant of Agriculture has davalopad a 320 origin by 22S0

daatlnation tranaportation modal with S6,000 admlaalbla calla and twanty

f ixad charga variablaa for achadullog cotton to gina. Tha Cantor For Cybar-

natic Scudiaa (diractad by A. Charnaa) at tha Univaralty of Taxaa at Auatin

has davalopad a 400 origin by 1500 daatlnation tranaportation modal with

20,000 admlaalbla calla and 3 axtra conacrainta for achaduling alack pro-

duction at Farah Manufacturing Corporation. Alao tha Cantar for Cybarnatic Studlaa

la davaloplag a funds flow modal for Ganaral Notora with 10,100 orlgina,

10,000 dastlnations and 500,000 admlaalbla calla.

3. Tha problsma in (1] wara alao uaad In tha forthcoming computational atudy

dlscuaaad In f of footnota 1.

-19-

References

1. Barr, R. S., F. Glover, and 0. Kllngman, "An Improved Version of the
Out-of-Kllter Method and a Comparative Study of Computer Codes,"
C. S. report 102, Center for Cybernetic Studies, University of
Texas, BEB-512, Austin, 1972.

2. Bennlngton. 6. E.. "An Efficient Minimal Cost Flow Algorithm," O.R. Report
75, North Carolina State University, Raleigh, North Carolina,
June 1972.

3. Clasen, R. J. "The Numerical Solution of Network Problems Using the
0ut-of-K11ter Algorithm," RAND Corporation Memorandum RM-5456-PR,
Santa Monica, California, March, 1968.

4. Canavas, G. C. "GETRAN - Random Number Generator," NASA-Lang ley, 1967.

5. Dantzlg, G. B. Linear Programming and Extensions.Princeton. N. J.:
Princeton University Press, 1963.

6. Dennis, J. B. "A High-Speed Computer Technloue for the Transportation
Problem," Journal of Association for Computing Machinery. Vol. 8,
(1958), 13FT5J:

7. Flood, M. M. "A Transportation Algorithm and Code," Naval Research
Logistics Quarterly. 8 (1961), 257-276.

8. Florian, M. and M. Klein, "An Experimental Evaluation-of Some Methods
of Solving Assignment Problem." Can. Op. Res. Soc. Journal. 8 (1970),
101-108.

9. Ford, L. R., Jr., and D. Fulkerson, Flows In Networks. Princeton, N. J.:
Princeton University Press, 1962.

10. Ford, L. R. and D. Fulkerson, "A Primal-Dual Algorithm for the Capacitated
Hitchcock Problem" Naval Research Logistics Quarterly, 4, 1

(1957) 47-54.

11. Fulkerson, 0. R. "An 0ut-of-Kilter Method for Solving Minimal Cost Flow
Problems," J. Soc. Indust. Appl. Math. 9 (1961), 18-27.

12. Gllckman, S., L. Johnson and L. Esel son, "Coding the Transportation
Problwi," Naval Research Logistics Quarterly. 7 (1960), 169-183.

-20-

■ m

 '"'

/

■''rr.-< r'iW'r;.-*rV#*-'*'**\'*J*:-*■ wwnww-i •|wt»»*'>Ä:t43«^Pr!ki-.t'

13. Glover, Fred, D. Karney, D. Klingman, and A. Napier, "A Computational
Study on Start Procedures, Basis Change Criteria, and Solution
Algorithms for Transportation Problems," To appear in Management
Science.

14. Glover, Fred and D. Klingman, "Double-Pricing Dual and Feasible Start
Algorithms for the Capacitated Transportation (distribution)
Problem," University of Texas at Austin, 1970.

15. Grigoriadis, M. and W. Walker, "A Treatment of Transportation Problems
by Primal Partition Programming,1 Management Science, 14. 9
(May 1968). 565-599.

16. Lee, S. "An Experimental Study of the Transportation Algorithms",
Master's Thesis, Graduate School of Business, University of
California at Los Angeles, 1968.

17. "0ut-of-K1lter Network Routine," SHARE Distribution 3536, SHARE Dis-
tribution Agency, Hawthorne, New York, 1967.

18. Shamma, M.M. and T.A. Williams, "Constructing Sample Networks for
Analyzing and Comparing Shortest Route Algorithms," 1972 ORSA-TIMS-
AIIE Joint National Meeting Atlantic City, New Jersey.

19. Spivey, W.A. and R.M. Thrall, Linear Optimization, New York: Holt,
Rinehart and Winston, 1970.

20. Srinivasan, V. and 6.L. Thompson, "Benefit-Cost Analysis of Coding
Techniques for the Primal Transportation Algorithm," to appear in
ACM.

21. Swart, W.W. "A Course Scheduling Problem: Model Development, Analysis,
and Solution Algorithm," Presented to the 41st National Meeting of the
Operations Research Society of America, New Orleans, Louisiana
April 26-28, 1972

22. Tansworthe, R.C. "Random Numbers Generated by Linear Recurrence Modulo
Two," Mathematics of Computation, 19 (1965) 201-209.

-21-

APPENDIX

INPUT-OUTPUT

Data Preparation

The data (input) deck must contain 2 cards (punched according to the format

below) for each problem desired. The program will generate a separate network

problem for each pair of cards in the data deck.

The following are the input requirements for each problem :

COLUMNS CONTENTS VARIABLE (TYPE)

Card 1.

1-8 8 digit positive integer to initialize ISEED(l)
the random number generator. (Must have AND
at least one non-zero digit in columns ISEED(2)
1-3 and in columns 4-8 .) (INTEGER)

Card 2.

1-5 Total number of nodes NODES (INTEGER)
6-10 Total number of source nodes (Including

transhipment sources) NSORC (INTEGER)
11-15 Total number of sink nodes (including

transhipment sinks) NSINK (INTEGER)
16-20 Number of arcs DENS (INTEGER)
21-25 Minimum cost for area MINCST (INTEGER)
26-30 Maximum cost for arcs MAXCST (INTEGER)
31-40 Total supply ITSUP (INTEGER)
41-45 Number of transhipment source nodes NTSORC (INTEGER)
46-50 Number of transhipment sink nodes NTSINK (INTEGER)
51-55 Percentage of skeleton arcs to be given

the maximum cost BHICST (REAL)
56-60 Percentage of arcs to be capacitated BCAP (REAL)
61-70 Minimum upper bound for capacitated arcs.. MINCAP (INTEGER)
71-80 Maximum upper bound for capacitated arcs.. MAXCAP (INTEGER)

All input values on card 2 must be right - justified in their field.
The variables BHICST and BCAP should have a decimal point included.

To generate transportation and assignment problems the number of sources

plus the number of sinks must equal the total number of nodes and the number

of transhipment sources and sinks must be equal to zero (I.e., NSORC + NSINK«

-22-

NODES and NTSORC - NTSINK "0). In addition, to create assignment problems

the number of sources must equal the number of sinks and the total supply

must be equal to the number of sources (i.e., NSORC - NSINK - ITSUP).

The maximum number of arcs which the program will create Is equal to the

number of pure sources (NPSORC - NSORC - NTSORC) times the remaining nodes

(N0NSORC - NODES - NPSORC) plus the total number of transhipments (NODES -

NSORC+NTSORC-NSINK+NTSINK) times N0NS0RC -1. If the user uAa for this

number uf arcs or greater the network produced will contain this number of

arcs. (Note: A network containing this number of arcs is totally dense.)

Output Format

The program writes two files, an output file (printer) and a problem file

(tape, disk or cards). The problem file contains all of the problems re-

quested in. a format compatible with SHARE 13,17] input format. Each problem

consists of a set of card images written as follows (beginning in column 1):

BEGIN (additional title information)

Title card for this problem

ARCS (additional title Information)

arc data cards

END

SOLVE

Each of the arc cards is written as follows:

cols. 1-6 blank
7-12 number of "from" node

13-18 number of "to" node
19-20 blank
21-30 cost
31-40 upper capacity
41-50 lower capacity

-23-

Table 11 contain« the arc data cards (aa written on the problem file)

for the problem specification given in Table 1. (Note, that all the arcs

emanating from a node appear togetier.) The three header cards (BEGIN, title,

ARCS) for this problem are given below:

BEGIN RANDOM NUMBER GENERATOR SEED-12345678, PERCENT HI CST-35.00

NODES - 12,S0RCE- 3,SINK- 4,ARCS- 32,C0ST- 10- 100,SUPPLY- 750

ARCS TS0RCE- 0,TSINK- 2,CAP- 100- 400,PERCENT CAP- 70.00

A file containing n problems will appear as follows:

BEGIN
title card
ARCS

arc data cards

END
SOLVE

Problem 1

BEGIN •%

title card
ARCS

arc data cards ^Pr

END
SOLVE 4

QUIT End of Job

The output file consists of a summary of the user input specifications

and the actual number of arcs generated for each problem. Table I is similar

to the summary produced by the code.

■24-

